Author(s): Vivek Ghulaxe

Email(s): vivekghulaxe@gmail.com

DOI: 10.52711/2321-581X.2025.00011   

Address: Vivek Ghulaxe
Riverview, Florida, USA.
*Corresponding Author

Published In:   Volume - 16,      Issue - 3,     Year - 2025


ABSTRACT:
This study provides Cognistream, a revolutionary predictive framework that aims to transform transactional intelligence for high-velocity digital firms functioning in dynamic, multichannel environments. The study aims to meet the growing need for intelligent, scalable, and real-time decision-making in revenue-critical business operations. The proposed system combines predictive analytics, real-time pattern identification, and anomaly-aware processing to allow for seamless orchestration of transactions, billing behaviors, and consumer engagement flows. A modular prototype was created and tested with simulated datasets representing telecommunications, digital retail, and public sector settings. The results show a 38% increase in prediction accuracy for billing anomalies, a 45% reduction in processing latency, and a noticeable improvement in customer response alignment. This study presents a novel architecture that differs from traditional rule-based systems by allowing for self-evolving transactional cognition a significant step forward in intelligent enterprise automation.


Cite this article:
Vivek Ghulaxe. Cognistream: A Predictive Framework for Transactional Intelligence in High-Velocity Digital Enterprises. Research Journal of Engineering and Technology. 2025; 16(3):115-6. doi: 10.52711/2321-581X.2025.00011

Cite(Electronic):
Vivek Ghulaxe. Cognistream: A Predictive Framework for Transactional Intelligence in High-Velocity Digital Enterprises. Research Journal of Engineering and Technology. 2025; 16(3):115-6. doi: 10.52711/2321-581X.2025.00011   Available on: https://rjetonline.com/AbstractView.aspx?PID=2025-16-3-3


10. REFERENCES:
1.    Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
2.    S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput, 1997; 9(8): 1735–1780.
3.    T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016; pp. 785–794.
4.    L. Breiman, “Random forests,” Mach Learn, 2001; 45(1): 5–32.
5.    C. C. Aggarwal, Outlier Analysis. Springer, 2015.
6.    R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,” ACM Comput Surv, 2019; 51(5): 1–36.
7.    T. Akidau and others, “The dataflow model: A practical approach to balancing correctness, latency, and cost,” in VLDB, 2015.
8.    M. Zaharia and others, “Discretized streams: Fault-tolerant streaming computation at scale,” in SOSP, 2013.
9.    P. Carbone and others, “Apache Flink: Stream and batch processing in a single engine,” IEEE Data Engineering Bulletin, 2015.
10.    M. Kleppmann, Designing Data-Intensive Applications. O’Reilly Media, 2017.
11.    S. Kamburugamuve and G. Fox, “Survey of distributed stream processing for large-scale data analytics,” IEEE Trans Serv Comput, 2016.
12.    F. F"arber and others, “SAP HANA database: data management for modern business applications,” SIGMOD Rec, 2012; 40(4): 45–51.
13.    A. R. Peslak, “Enterprise resource planning success: A measurement model,” Information Systems Management, 2006; 23(1): 28–44.
14.    B. Johansson and others, “The impact of ERP systems on firm and business process performance,” Enterp Inf Syst, 2010; 4(4): 391–408.
15.    A. AboAbdo, B. Aldhmadi, and A. Alghamdi, “Cloud ERP: A review and future research directions,” Journal of King Saud University–Computer and Information Sciences, 2021.
16.    L. Da Xu and others, “Industry 4.0: State of the art and future trends,” Int J Prod Res, 2018; 56(8): 2941–2962.
17.    H. Kagermann, W. Wahlster, and J. Helbig, “Recommendations for implementing the strategic initiative Industrie 4.0,” 2013.
18.    S. Wang and others, “Implementing smart factory of Industrie 4.0: An outlook,” Int J Distrib Sens Netw, 2016.
19.    H. Lasi and others, “Industry 4.0,” Business & Information Systems Engineering, 2014; 6(4): 239–242.
20.    R. T. Rust and M.-H. Huang, “The service revolution and the transformation of marketing science,” Marketing Science, 2014; 33(2): 206–221.
21.    P. C. Verhoef and others, “Customer experience creation: Determinants, dynamics and management strategies,” Journal of Retailing, 2009; 85(1): 31–41.
22.    V. Venkatesh and others, “Consumer acceptance and use of information technology,” MIS Quarterly, 2012; 36(1): 157–178.
23.    M. Kleijnen, K. de Ruyter, and M. Wetzels, “An assessment of value creation in mobile service delivery,” Journal of Retailing, 2007; 83(1): 33–46.
24.    S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
25.    K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the Internet of Things,” IEEE Access, 2016.
26.    J. Al-Jaroodi and N. Mohamed, “Blockchain in industries: A survey,” IEEE Access, 2019; 7: 36500–36515.
27.    J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques. Elsevier, 2011.
28.    P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining, 2nd ed. Pearson, 2018.
29.    D. Sculley and others, “Hidden technical debt in machine learning systems,” in NeurIPS, 2015.
30.    V. Ghulaxe, “AI for Consumers: Embracing Multichannel Buying Experiences,” Unpublished Research Whitepaper, 2024.
31.    V. Ghulaxe, “Accelerating Growth with SAP BRIM: Streamlining Billing and Revenue,” Industry Insights Series, 2024.
32.    V. Ghulaxe, “AI-Driven SAP S/4 HANA Migration: A Public Sector Blueprint,” Government Technology Transformation Report, 2024.

Recomonded Articles:

Author(s): Amirta R, Deepika Menon S, Ramya G Franklin

DOI: 10.5958/2321-581X.2020.00002.1         Access: Open Access Read More

Author(s): A. Narmada, P. Sudhakara Rao

DOI: 10.5958/2321-581X.2018.00029.6         Access: Open Access Read More

Author(s): Shubhangi A. Wakode, Sunil R. Gupta

DOI: 10.5958/2321-581X.2015.00039.2         Access: Open Access Read More

Author(s): Chaitali Katpatal, Pallavi Bijwe, Rashmi Fulper, Prof. B. M. Hardas

DOI: 10.5958/2321-581X.2019.00020.5         Access: Open Access Read More

Author(s): Deepti Verma, Deepika Chandrawanshi

DOI:         Access: Open Access Read More

Author(s): Bhalchandra S. Tankkar, Swapnil Wanjari

DOI: 10.5958/2321-581X.2015.00061.6         Access: Open Access Read More

Author(s): M. Venu Gopala Rao, M. Babita Jain

DOI:         Access: Open Access Read More

Author(s): S. Sanjeev Kumar, N. Balamurugan

DOI:         Access: Open Access Read More

Author(s): Namrata Jain, Priti Shukla, Rajesh Chakrawarti

DOI: 10.5958/2321-581X.2017.00017.4         Access: Open Access Read More

Author(s): M. Jyothirmai, A. Mounika, K. Prathima, K. Navya Sree

DOI: 10.5958/2321-581X.2018.00027.2         Access: Open Access Read More

Author(s): S. Elavenil, Vijayakumar

DOI:         Access: Open Access Read More

Author(s): Mandeep Singh Walia

DOI: 10.5958/2321-581X.2016.00010.6         Access: Open Access Read More

Research Journal of Engineering and Technology (RJET) is an international, peer-reviewed, research journal aiming at promoting and publishing original high quality research in all disciplines of engineering sciences and technology....... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2321-581X 


Recent Articles




Tags